UMWELT & GESELLSCHAFT **UMWELT**

Alien species and human health impacts: Evidence syntheses and the role of climate change

S. Schindler, F. Essl, H.R. Bayliss, M. Adam, H.-P. Hutter, A.S. Pullin, S. Follak, P. Wallner, M. van Hove, F. Unterhofer, K. Lemmerer & W. Rabitsch

ECBCC 2017: Bonn (DE)

Aliens_Health

28 June 2017

DARSPEKTIVEN FÜR **UMWELT** & GESELLSCHAFT

Background Alien species

Alien species redefine biogeography in the Anthropocene

Fig. 1. Dendrogram and map of compositional similarities among lists of alien terrestrial gastropods. (A and B) Before dispersal by humans. (C and D) After dispersal by humans. Compositional dissimilarity was measured by the β_{sim} index. Clusters were built through the minimization of the average compositional dissimilarity of one location to the others [i.e., UPGMA (unweighted pair group method with arithmetic mean) grouping]. Colors indicate main clusters identified by the dendrogram and their corresponding locations in the world map.

Capinha et al. (2016) Science

DARSPEKTIVEN FÜR **UMWELT** & GESELLSCHAFT

Background Alien species

B) Pressures

Alien species are relevant biodiversity pressures and biodiversity indicators

Tittensor et al. (2014) Science

UMWELT & GESELLSCHAFT **UMWELT**

Background Alien species

Alien species are accumulating globally

Seebens et al. (2017) Nature Communications

Aliens_Health The aims

Project **ALIENS_HEALTH** granted by the 6th Austrian Climate Research Programme (duration April 2014 - **June 2017**):

-) To synthesize evidence for answering the question "which public health risks emerge from AS under climate change"

and

-) To evaluate "potential environmental and medical mitigation measures"

Alien species: public health risk and management options

Online Survey among Austrian stakeholders on health relevant alien species

53 responses (40 % return rate)

Active in the sectors:

Environment: 30% Public administration: 24% Research: 18%

\rightarrow Good coverage of Austrian expertise

Schindler et al., in prep.

Question: Which species groups are the most relevant?

Allergenic plants: 88% Other plants: 55% Vectors – evertebrates: 51%

n = 49 respondents
providing totally 149 answers
(multiple answers possible)

Question: Which problems are particularly concerning?

Schindler et al., in prep.

Question: Which kind of measures were implemented, discussed or can be recommended?

Preventive environmental: 37% / 52% / 58%

[Implem. / Disc. / Recomm.]

Environmental control: 31% / 54% / 37%

Education: 31% / 44% / 35%

Research: 22% / 40% / 35%

n = 51-52 respondents

Schindler et al., in prep.

Number of answers

PERSPEKTIVEN FÜR **umwelt**bundesamt

Aliens_Health Scoping Review (Schindler et al. 2015)

Drivers of

Global change

Change in

distribution and abundance of health relevant IAS

Change in

Response by

society and policy:

Global change

mitigation

IAS

management Medical

Schindler et al. (2015) Alien species and public health impacts in Europe: a literature review. Neobiota

What evidence exists for changes in the occurrence, frequency or severity of human health impacts resulting from exposure to alien species in Europe?

7 Literature databases explored

CAB Direct including CAB Abstracts and Global Health

Web of Science MEDLINE

+ specialist sources (journals & projects)

Bayliss et al. (2015) Environmental Evidence

. . .

APPENDIX 2: DRAFT LIST OF INVASIVE SPECIES WITH HUMAN HEALTH IMPACTS PRESENT IN EUROPE

Туре	Species	Hulme	<u>Mazza</u> et	Schindler	GISD	Other
	n=193	2014	al. 2014	et al. 2015	search	(added by authors)
Plant	Acacia spp.		x	x		
Plant	Acer spp.		х			
Vertebrate	Acridotheres tristis				x	
Invertebrate	Aedes aegypti		х	x	х	
Invertebrate	Aedes albopictus	x	х	x	х	
Invertebrate	Aedes atropalpus	x				
Invertebrate	Aedes japonicus	x		x		
Invertebrate	Aedes koreicus			x		
Vertebrate	Agapornis cana			x		

Health Impact Alien species abundance (or proxies)

Less than 30 original articles (out of 13304 detected ones):

```
e.g.:
```

changes in sensitization levels, e.g. to Ambrosia artemisiifolia, or

first reports of illness or injury resulting from exposure to alien species such as:

- Autochthonous transmission of exotic diseases (Chikungunya virus and Dengue fever) by alien mosquitos *Aedes spp*.
- Significant health impacts along Mediterranean coasts due to blooms of alien unicellular algae such as *Ostreopsis* spp.
- Dermatitis associated e.g. to the oak processionary moth *Thaumetopoeia processionea*.

→ surprisingly little studies directly related or even confirmed changes in health impacts to alien species in Europe

Bayliss et al. (submitted)

What is the effectiveness of management options used for control of Common ragweed Ambrosia artemisiifolia?

Methods specified in Systematic Review Protocol (Schindler et al. 2016):

Articles for abstract check: n = 1431

Remaining articles after abstract check: n = 385

Type of treatment	Number of articles
Chemical	212
Biological Control	45
Physical (incl. management, crop rotation)	30
Combined	20
Unclear, if indeed relevant	78
SUM	385

Status: Articles completely reviewed: n=64; cases extracted from 64 articles: n=734 Schindler et al. (2016) Environmental Evidence

UMWELT & GESELLSCHAFT **UMWELT** BUNDESamt

Aliens_Health Systematic Review Ambrosia: BIOLOGICAL control

Evidence for performance of Ambrosia biocontrol agents

Table 1 Host range, prioritisation and management approach for proposed biological control candidates against Ambrosia artemisijfolia in Europe (see text for details)

	Host range*				
Taxon	Field observations	Experimental studies	Biosafety/feasibility	Priority for Europe	Management approach
Insecta					
Coleoptera					
Ophraella slobodkini	AMBEL	AMBEL, Ivafr		1	Classical/ inundative?
Smicronyx perpusillus	AMBEL	?		1	Classical
Smicronyx tesselatus	AMBEL, Ambrosia	?	Attack of Ambrosia maritima?	2	Classical
Trigonorhinus tomentosus†	Ambca, FRSCO, Ambce, AMBDU, AMBER	AMBEL‡	Attack of <i>A. maritima</i> ? Establishment?	1	Classical
Zvgogramma bicolorata§	AMBEL, Parthenium	?	Attack of A. maritima?	2	Classical
Zvgogramma disruptat	AMBEL	AMBEL [†]	Establishment?	1	Classical
Zygogramma tortuosa† Diptera	AMBER	Ambrosia	Attack of A. maritima?	2	Classical
Callachna aibba	AMBEL, AMBPS	?	Attack of A. maritima?	2	Classical
Contarinia partheniicola	Ambca, FRSCO, AMBDU, AMBER, AMBPS, Parin	?	Rare in native range?	2	Classical
Euaresta bella†	AMBEL	AMBELt	Establishment?	1	Classical
Euaresta toba	AMBEL, AMBCU, AMBTE	?	Attack of A. maritima?	2	Classical
Rhopalomyia ambrosiae	AMBEL, AMBPS	?	Rare in native range?	2	Classical
Hemiptera			-		
Stobaera concinna§	AMBEL, Parthenium	?	Attack of A. maritima?	2	Classical
Lepidoptera					
Adania ambrosiae	FRSAC, AMBEL, Ambca, AMBER, AMBPS	?	Attack of A. maritima?	2	Classical
Bucculatrix agnella	AMBEL	?	Attack of A. maritima?	2	Classical
Schinia rivulosa	AMBEL, AMBPS, Ambrosia	?	Attack of A. maritima?	2	Classical
Tarachidia candefactat	AMBEL, FRSCO, AMBPS	AMBEL¶	Attack of A. maritima?	1	Classical
Tischeria ambrosiaeella	AMBEL, AMBTE	?	Attack of A. maritima?	2	Classical
Fungi					
Ascomycota					
Dothideomycetes					
Capnodiales					
Mycosphaerellaceae					
Septoria ambrosiicola Speg.	Ambrosia		Attack of A. maritima?	2	Classical/

Following review of Greber et al. (2011), who present 23 species of insects and fungi.

Articles from SR plus specific searches with 23 species names

Rabitsch et al. (2017) The rise of non-native vectors and reservoirs of human diseases

Conclusions

- Patterns and processes of emerging infectious diseases, parasites and biological invasions share similarities
- CBD and IPBES should reinforce their participation to the 'One Health'- initiative

Book Chapter "CC effects on health relevant AS"

Schindler et al. (in press) CC and increase of impacts on human health by alien species

Climate change

directly relevant for establishment & spread

(only) indirectly for introduction & impacts

UMWELT & GESELLSCHAFT **UMWELT**

Aliens_Health Dissmination Book Chapter "CC effects on health relevant AS"

Schindler et al. (in press) CC and increase of impacts on human health by alien species

Uncertainties:

- Pathogens, vectors and reservoir hosts interact in different native/alien combinations (Rabitsch et al., 2017);
- general difficulties to predict invasions (Leung et al., 2004; Seebens et al., 2013);
- the inherent ecological complexities of multi-species interactions (Lafferty, 2009; Hatcher et al., 2012; Smith et al., 2012);
- difficulties of disentangling CC impacts from other factors (La Ruche et al., 2010);
- climatic niche shifts during the invasion process (Medley, 2010);
- uncertainty of future human actions (Fischer et al., 2011; Thomas et al., 2011; Smith et al., 2012);
- CC affecting relevant species in a nonlinear fashion (Lafferty, 2009);
- stochastic climatic extreme events (Parmesan et al., 2000; Battisti et al., 2006; Diez et al., 2012);
- difficulties to disentangle human-mediated movements and natural migration processes (Walther et al., 2009);
- lack of data or limitations in data quality (Lobo et al., 2010; Smith et al., 2012)

Aliens_Health Overall Conclusions (1)

Evidence base and interdisciplinarity:

- European literature on alien species of human health concern is focused towards few well studied species of Asteraceae (mainly *Ambrosia artemisiifolia*) and Diptera (mainly *Aedes* spp.). This is worrisome as the risks may not be fully recognized.
- Original research combining ecology and health impact of alien species hardly exist in Europe. It would be important to counteract the implications of alien species risks posed for human health.

UNWELT & GESELLSCHAFT **UMWELT** BUNDESamt

Aliens_Health Overall Conclusions (2)

Concerns and recommendations:

- Concerns about the future are prevailing concerns about the current situation
- Preventive environmental measures highly recommended
- Allergenic plants: Eradication of ragweed recommended high cost benefit (Richter et al. 2013).
- Vectors and pathogens: more complex systems, more species involved, higher uncertainties (analogy to wildlife pathogens, Roy et al. 2017)
- CC: mainly effects on establishment and spread of alien species
- Improved understanding of the ecology of pathogens, vectors, reservoirs and transmission cycles, and of the role of human activities under different climates is required to reduce uncertainties
- There is a need for action and research, particularly in the fields of pathway management, epidemiology, modelling and vector monitoring and control.

Richter et al. (2013) J Applied Ecology Roy et al. (2017). Conservation Letters

Acknowledgements

Project partners

Center for Evidence Based Conservation (Bangor, UK): Andrew Pullin Helen Bayliss

Medical University Vienna (Vienna, Austria): Hans-Peter Hutter Petter Wallner

Funding 6th Austrian Climate Research Programme (Grant Number KR13AC6K11141)

Thanks for your attention!

Contact

Mag.Dr. Stefan Schindler

(T) +43-1-31304-3381

(F) +43-1-31304-3700

(Tel-M): +43-650-460-5771

(E) stefan.schindler@umweltbundesamt.at

Umweltbundesamt www.umweltbundesamt.at